Exercise 69

Find a cubic function $y=a x^{3}+b x^{2}+c x+d$ whose graph has horizontal tangents at the points $(-2,6)$ and $(2,0)$.

Solution

Take the derivative of the cubic function.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(a x^{3}+b x^{2}+c x+d\right) \\
& =\frac{d}{d x}\left(a x^{3}\right)+\frac{d}{d x}\left(b x^{2}\right)+\frac{d}{d x}(c x)+\frac{d}{d x}(d) \\
& =a \frac{d}{d x}\left(x^{3}\right)+b \frac{d}{d x}\left(x^{2}\right)+c \frac{d}{d x}(x)+\frac{d}{d x}(d) \\
& =a\left(3 x^{2}\right)+b(2 x)+c(1)+(0) \\
& =3 a x^{2}+2 b x+c
\end{aligned}
$$

The graph of y has horizontal tangents at $x=-2$ and $x=2$, so the derivative must be equal to zero for these values of x.

$$
\begin{aligned}
3 a(-2)^{2}+2 b(-2)+c & =0 \\
3 a(2)^{2}+2 b(2)+c & =0
\end{aligned}
$$

Simplify the system

$$
\begin{aligned}
& 12 a-4 b+c=0 \\
& 12 a+4 b+c=0
\end{aligned}
$$

and solve it for a and b in terms of c.

$$
a=-\frac{c}{12} \quad b=0
$$

Consequently, the cubic function with horizontal tangents at $x=-2$ and $x=2$ is

$$
y=-\frac{c}{12} x^{3}+c x+d
$$

Use the fact that $y=6$ when $x=-2$ and the fact that $y=0$ when $x=2$ to determine c and d.

$$
\begin{aligned}
y(-2) & =-\frac{c}{12}(-2)^{3}+c(-2)+d=6 \\
y(2) & =-\frac{c}{12}(2)^{3}+c(2)+d=0
\end{aligned}
$$

Solve this system of equations for c and d.

$$
c=-\frac{9}{4} \quad d=3
$$

Therefore, the cubic function whose graph has horizontal tangents at the points $(-2,6)$ and $(2,0)$ is

$$
y=\frac{3}{16} x^{3}-\frac{9}{4} x+3 .
$$

